Abstract

To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique during the presence of North American Monsoon System (NAMS) in 2006. Patterns in NEE and ET were different in wet and dry periods. Three markedly defined periods were found during the six-month study period. A pre-monsoon period, where gas exchange was close to zero. A monsoon period, divided in two stages: 1) early monsoon: a strong increase in the respiratory rate marked by a peak of positive values, with a maximum of 22 g CO 2 m −2 day −1, and, 2) late monsoon: an assimilation period occurred in the peak of the monsoon period, with sustained values around −20 g CO 2 m −2 day −1. The final was a post-monsoon period, where ecosystems returned to dormancy. NEE and ET trends in the TDF were similar to other seasonally dry ecosystems influenced by the NAMS. During the study period the TDF of Northwest Mexico acted as a sink capturing 374 g CO 2 m 2 with an ecosystem water use efficiency (-NEE/ET) comparable to other ecosystems in the region. Mechanistic information about biological and environmental variables controlling gas exchange dynamics is still necessary to predict how seasonally dry ecosystems would respond to climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call