Abstract

This Perspective starts with the discussion of the properties of an interesting metalloenzyme (carbonic anhydrase, CA) that performs extremely successfully the activation of carbon dioxide. Conclusions from that are important for many synthetic procedures and include experimental and theoretical investigation (DFT calculations) of such metal mediated processes in the condensed and in the gas phase in which the zinc cation plays a dominant role. This is extended to the bio-analogue activation of further heterocumulenes such as COS, an important atmospheric trace gas, and CS(2). Novel metal complexes which serve as useful catalysts for the reactions (copolymerisations and cyclisation) of CO(2) and oxiranes are discussed subject to the inclusion of recently published DFT calculations. We continue with the discussion of the very general aspect of the insertion of CO(2) into metal-nitrogen bonds (formation of carbamates). This again is closely related to many biological or bio-analogue processes. We describe the synthesis and mechanistic aspects of characteristic metal carbamates of a wide variety of metals and include a discussion of the mechanistic aspects, especially for the formation of Mg(2+) and Li(+) carbamates and the formation of related cyclic products after addition of the heterocumulenes CO(2), Ph-NCO or CS(2) to novel ligands, the 4H-pyridin-1-ides which finally result in the formation of e.g. 1,3-thiazole-5(2H)-thiones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.