Abstract

The properties of reversible, room-temperature, chiral, ionic liquids (L-A-C) are reported. They are easily prepared by passing CO2 gas through equimolar mixtures of a simple amidine (L) and a chiral amino alcohol (A), L/A, derived from a naturally occurring amino acid, and they can be returned to their L/A states by passing a displacing gas, N2, through the ionic liquid; the process of passing from uncharged to charged states can be repeated several times without discernible degradation of each phase. All of the 40 L/A combinations examined form room-temperature ionic liquids (most to ca. 50 °C under 1 atm of CO2) and they remain liquids to at least −20 °C. The L-A-C phases are more viscous than their corresponding L/A phases, the conductivities are much higher in the L-A-C phases than in the L/A phases, and the solubility characteristics of the liquids can be modulated significantly by exposing them to either CO2 or N2 gas. The spectroscopic characteristics of the L/A and L-A-C phases have been compared...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.