Abstract

Solid oxide fuel cells (SOFCs) can be operated on a wide range of fuels, including hydrocarbons. Such a fuel supply includes the risk of carbon formation on the catalytically active nickel centers within the porous anodic substrate. Coking is very critical for the reliability and durability of the SOFCs. Thus, within this study, coking propensity of the most prominent carbon containing fuels was analyzed by thermodynamic equilibrium calculations for two fundamentally different types of carbon and detailed transient numerical simulations based on heterogeneous reforming kinetics. This approach is new to the literature and reveals the strengths and weaknesses of both fundamentally different approaches. It was shown that in thermodynamic equilibrium calculations, carbon formation is most likely due to pure methane. Carbon monoxide will form the least amounts of carbon in typical SOFC temperature ranges. Furthermore, based on a validated computational fluid dynamics (CFD) simulation model, detailed heterogeneous reaction kinetics were used to directly simulate elementary carbon adsorbed to the reactive substrate surface. The amounts, spatial and temporal distribution, of carbon atoms within the porous structure were identified between 600 °C and 1000 °C for a broad steam-to-carbon ratio range of 0.5–2. It was shown that most carbon is formed at the beginning of the substrate. A key finding was that steady-state results differ greatly from results within the first few seconds of fuel supply. An increment in temperature causes a significant increase in the amount of carbon formed, making the highest temperatures the most critical for the SOFC operation. Moreover, it was shown that mixtures of pure methane deliver the highest amounts of adsorbed elementary carbon. Equimolar mixtures of CH4/CO cause second highest surface coverages. Pure carbon monoxide blends led to least significant carbon formations. This work has shown the important contribution that thermodynamic equilibrium calculation results, as well as the outcomes of the detailed CFD simulations, allow to identify suitable operating conditions for the SOFC systems and to minimize the risk of coking on porous anodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.