Abstract
Crystal structure, magnetoelastic coupling, magnetization and magnetocaloric effects of Mn3SnC0.94 and Mn3SnC0.81 were investigated. Temperature-dependent high-resolution X-ray diffraction measurements showed that a larger carbon deficiency of Mn3SnC0.81 reduces lattice distortions more significantly than it reduces the lattice parameter. Resonant ultrasound spectroscopy measurements showed that the larger carbon deficiency has no effect on the lattice stiffening across a ferromagnetic transition, whereas it reduces the lattice softening across a low-temperature transition. Magnetic measurements showed that the larger carbon deficiency doubles high-field magnetization and improves the refrigeration capacity. It is suggested that the larger carbon deficiency of Mn3SnC0.81 weakens antiferromagnetic interactions more significantly than it enhances ferromagnetic interactions. However, the magnetocaloric effect of each sample includes a contribution from the lattice entropy change, which is not sensitive to the carbon deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.