Abstract

Fire Ecology Wildfire activity has been increasing in the boreal forests of the Northern Hemisphere, releasing carbon into the atmosphere from biomass and soil, with potential feedback to climate warming. In a long-term study, Mack et al. analyzed wildfire impacts on the carbon balance of boreal forest in Alaska, with particular focus on forest-regeneration patterns. After fire, the species composition in most of the study sites changed from black spruce to a mixture of conifers and deciduous broadleaf tree species. The stands that had shifted to deciduous dominance stored fivefold more soil carbon than stands that returned to black spruce dominance. Therefore, the functional traits of deciduous trees compensated for the combustion loss of soil carbon, pointing to a potential mitigation of the feedback effect of boreal forest fire to climate warming. Science , this issue p. [280][1] [1]: /lookup/doi/10.1126/science.abf3903

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call