Abstract

<p>We use a LGM setup of the CESM with marine and terrestrial biogeochemistry. This free-running  set-up (i.e., no freshwater hosing) exhibts Dansgaard-Oeschger events and Antarctic Isotope Maxima with time-lags and amplitudes that are consistent with paleo reconstructions. The CO2 signal associated DO events is also consistent with reconstructions: a 10 ppm/kyr increase during stadials, with the increase continuing some 400 years after Antarctica has started to cool again. An analysis of the modelled air-sea/land carbon fluxes reveals that some 3ppm of the stadial increase are due to shifting rain and temperature patterns that reduce growth of land vegetation. This adjustment is largely concluded after 3 centuries. The remainder of the signal is due to reduced ocean uptake. It turns out that reduced subduction of carbon in the Southern Ocean is mostly compensated by reduced upwelling in the equatorial oceans. Thus, as found in previous studies, much of the extra carbon is due to reduced uptake in the North Atlantic, partly directly due to reduced deep convection, and partly due to a reduced biological productivity because much of the North Atlantic nutrients are supplied by the AMOC. A big surprise is the emergence of the North Pacific as a major contributor to the changes in the air-fluxes of carbon. It is the reorganization of its wind-driven circulation that explains why global net-outgassing of carbon continues long after the interstadial has begun.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call