Abstract

The impact of the carbon structure, the aging protocol, and the gas atmosphere on the degradation of Pt/C electrocatalysts were studied by electrochemical and spectroscopic methods. Pt nanocrystallites loaded onto high-surface area carbon (HSAC), Vulcan XC72, or reinforced-graphite (RG) with identical Pt weight fraction (40 wt %) were submitted to two accelerated stress test (AST) protocols from the Fuel Cell Commercialization Conference of Japan (FCCJ) mimicking load-cycling or start-up/shutdown events in a proton-exchange membrane fuel cell (PEMFC). The load-cycling protocol essentially caused dissolution/redeposition and migration/aggregation/coalescence of the Pt nanocrystallites but led to similar electrochemically active surface area (ECSA) losses for the three Pt/C electrocatalysts. This suggests that the nature of the carbon support plays a minor role in the potential range 0.60 < E < 1.0 V versus RHE. In contrast, the carbon support was strongly corroded under the start-up/shutdown protocol (1.0 ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call