Abstract

The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode.

Highlights

  • In the last two decades, nanomaterials in the form of nanotubes and nanowires have begun to be reported as promising materials for wide field of applications [1,2]

  • The reproducible nanostructured electrode surface could be fabricated using lithography as a common tool for microelectronics devices implementation [5], anodization process for nanorods or nanotubes creation [6,7]. One of these techniques is the creation of vertically aligned multiwalled carbon nanotubes (MWCNTs) grown directly on the surface using chemical vapour deposition (CVD) [8]

  • It is known that that cytosine, adenine, thymine and guanine give signals at carbon electrodes [15,16,17]. We found that both the nucleic acid samples gave all four signals corresponding to single bases at the tested electrodes

Read more

Summary

Introduction

In the last two decades, nanomaterials in the form of nanotubes and nanowires have begun to be reported as promising materials for wide field of applications [1,2] Such materials could be used for fabrication of miniaturized electrodes. The reproducible nanostructured electrode surface could be fabricated using lithography as a common tool for microelectronics devices implementation [5], anodization process for nanorods or nanotubes creation [6,7]. One of these techniques is the creation of vertically aligned multiwalled carbon nanotubes (MWCNTs) grown directly on the surface using chemical vapour deposition (CVD) [8]. The aim of this study was to fabricate MWCNTs and further to test the particles as a part of carbon composite electrodes with commercial carbon particles on detection of nucleic acids

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.