Abstract
Boron particles with a homogeneous carbon-coating layer were employed as the precursor to fabricate MgB2 superconductors to generate artificial two-dimensional (2D) flux-pinning centers. Systematic microstructure investigation reveals that the carbon layers are well-distributed in the MgB2 matrix without agglomeration. The thickness of the carbon layers is smaller than the MgB2 coherent length, which makes them transparent to supercurrent. The critical current density is increased because of the strong flux-pinning effects of the 2D carbon layers in the superconductor as highly efficient flux-pinning centers and the increased irreversibility field due to the carbon-doping effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.