Abstract

A series of micro-sized TiO2 materials with different morphologies were synthesized via pyrolysis of spray-dried precursors, which were obtained via tetrabutyl titanate (TBT) hydrolysis reaction. The pH value of the precursor sol and its TBT content significantly influenced the morphology of the synthesized TiO2 materials but showed little effect on the improvement of lithiation-delithiation capacity. The carbon coating effect on the electrochemical performance improvement depended on the morphology of the synthesized TiO2 particles. Carbon-coated TiO2 bowls with a large thickness (1.18μm) provide an initial Li+ insertion capacity of 310mAh g−1 at a cut-off voltage of 1V vs. Li+/Li, which is much higher than the carbon-coated TiO2 bowls with a small thickness (0.62μm, capacity: 22mAh g−1). Carbon-coated TiO2 bowls with a small thickness can be activated via lithiation-delithiation cycling between 0 and 3V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.