Abstract

The desirable properties of the metallic bipolar plates in polymer electrolyte membrane fuel cells (PEMFC) are good corrosion resistance, high electrical conductance, hydrophobicity, and low cost. In this study, carbon films are deposited on stainless steel 316L (SS316L) samples by close field unbalanced magnetron sputtering. The AFM, SEM, and Raman results show that the carbon film is dense, continuous, and amorphous. The corrosion resistance, hydrophobicity, and interfacial contact resistance (ICR) of the carbon coated steel are investigated and compared to those of uncoated SS316L. The deposited carbon film has high chemical inertness thereby significantly enhancing the corrosion resistance of the coated SS316L. Furthermore, the carbon coated SS316L is more hydrophobic and the resulting ICR is elevated to that of graphite. Our results indicate that the properties of the carbon coated SS316L are better than those of conventional graphite bipolar plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.