Abstract
Silicon is the most promising anode material for the next-generation lithium-ion batteries (LIBs). However, the large volume change during lithiation/delithiation and low intrinsic conductivity hamper its electrochemical performance. Here we report a well-designed LIB anode in which carbon-coated Si nanoparticles/reduced graphene oxide (Si/rGO) multilayer was anchored to nanostructured current collector with stable mechanical support and rapid electron conduction. Furthermore, we improved the integral stability of the electrode through introducing amorphous carbon. The designed anode exhibits superior cyclability, its specific capacity remains above 800mAhg−1 after 350 cycles at a current density of 2.0Ag−1. The excellent electrochemical performance can be attributed to the fact that the Si/rGO multilayer is reinforced by the nanostructured current collector and the formed amorphous carbon, which can maintain the structural and electrical integrities of the electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.