Abstract
Na3V2(PO4)3 (NVP) has been considered as a most promising cathode material for sodium-ion batteries (SIBs), but NVP usually exhibits poor cycling stability and rate performance due to the low intrinsic electrical conductivity. Herein, we prepared carbon-coated Na3V2(PO4)3 anchored on freestanding graphite foam (denoted as NVP@C-GF) as a cathode for SIBs. The NVP@C-GF exhibits superior sodium-ion storage performance, including rate capability (56 mAh g-1 at 200 C) and long cycle life (54 mAh g-1 at 100 C after 20 000 cycles). The resulting NVP@C-GF inherits the advantages of 3D free-standing graphite that possesses high electrical conductivity and porous structure for the electrolyte to soak in. Furthermore, carbon-coated NVP particles anchored on the surface of GF not only accommodate the volume change of NVP during charge/discharge but also reduce the diffusion distance of the Na+ ion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.