Abstract
In the "petite-negative" yeast Kluyveromyces lactis carbon catabolite repression of some cytoplasmic enzymes has been observed. However, with respect to mitochondrial enzymes, in K. lactis, unlike the case in the "petite-positive" yeast Saccharomyces cerevisiae, growth on fermentable carbon sources does not cause repression of respiratory enzymes. In this paper data are reported on carbon catabolite repression of mitochondrial enzymes in K. lactis, in particular on L- and D-lactate ferricytochrome c oxidoreductase (LCR). The L- and D-LCR (E.C. 1123, E.C. 1124) in yeast catalyze the stereospecific oxidation of D and L isomers of lactate to pyruvate. This pathway is linked to the respiratory chain, cytochrome c being the electron acceptor of the redox reaction. We demonstrate that the level of mitochondrial D- and L-LCR is controlled by the carbon source, being induced by the substrate lactate and catabolite-repressed by glucose. We cloned the structural gene for D-LCR of K. lactis (KlDLD), by complementation of growth on D,L-lactate in the S. cerevisiae strain WWF18-3D, carrying both a CYB2 disruption and the dld mutation. From the sequence analysis an open reading frame was identified that could encode a polypeptide of 579 amino acids, corresponding to a calculated molecular weight of 63,484 Da. Analysis of mRNA expression indicated that glucose repression and induction by lactate are exerted at the transcriptional level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.