Abstract

This paper describes the fabrication of a carbon fiber reinforced/carbon–boron nitride (C/C–BN) hybrid matrix composite for possible use in aircraft brakes. These composites were fabricated via liquid infiltration of a liquid crystalline borazine oligomer into a low-density carbon fiber/carbon matrix (C/C) composite. The friction and wear properties of the C/C–BN were explored over the entire energy spectrum for aircraft braking using an inertial brake dynamometer. The C/C–BN composites with densities of 1.55 g/cc displayed wear rates 50% lower than values observed with C/C samples with densities of approximately 1.75–1.8 g/cc. This includes the near elimination of wear from 300 to 600 kJ/kg, which represents the normal landing regime for aircraft brakes. This encouraging behavior is attributed in part to the improved oxidation resistance of the BN at high energy levels and the ability of the BN to facilitate formation of a stable wear film at lower energy levels. The coefficient of friction, while being slightly lower than the values for C/C, appeared much less sensitive to changes in energy level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.