Abstract

This chapter describes the option of energy conversion of carbon-containing fuels with the capture and storage of the associated CO 2 . The main capture technologies in the field of hydrogen production are compared with capture technologies for electricity generation. Following the process chain of carbon capture and storage (CCS), transport and storage options for CO 2 are discussed. Further societal issues, such as legal and regulatory aspects, as well as public perception are examined. Why carbon capture and storage? The world energy supply is still strongly dependent on fossil fuels. According to the IEA (2006), in 2004 some 80% of the world total primary energy supply originated from fossil fuels. As described in Section 2.1.2, the use of fossil fuels and the associated greenhouse-gas emissions are the major source for human-induced climate change; nevertheless, there is a good probability that fossil fuels will also play an important role for energy supply in the coming decades. This holds true not only for the conventional applications, such as electricity, but possibly also for the generation of hydrogen. Reasons for the continued use of fossil fuels are, amongst others, the favourable economics and the physical properties, such as high energy density for use in the transport sector. Increasing energy efficiency and energy production from renewable sources have the potential to reduce GHG emissions in the long term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.