Abstract

AbstractThin‐film organic lasers are attractive light sources for a variety of applications. Recently, it is reported that carbon‐bridged oligo(p‐phenylenevinylene)s (COPVn with repeating unit n = 1–6) function as unique laser dyes which combine high fluorescence efficiency, wavelength tunability, and both thermal and photostability, making them ideal for use in organic semiconductor lasers. However, in order to obtain such excellent properties, COPVn require blending in a matrix, such as a thermoplastic polymer, thus leading to miscibility issues, limited absorption, and charge transporting properties. Here, high‐performance lasers with a novel active polymer poly‐COPV1, based on the basic unit of COPV1 and prepared as a high‐quality neat film, are reported which overcome the trade‐off between the device performance and durability. The prepared lasers show thresholds 30 times lower and operational lifetimes 300 times longer than devices based on COPV1 dispersed in polystyrene. The low threshold operation allows the poly‐COPV1 lasers to be pumped by a nitride diode laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.