Abstract

Increased levels of particulate air pollution are associated with increased respiratory and cardiovascular mortality and morbidity. Some epidemiologic and toxicological researches suggest ultrafine particles (<100 nm) to be more harmful per unit mass than larger particles. In the present study, the effect of particle size (nano and micro) of carbon black (CB) particle on viability, phagocytosis, cytokine induction, and DNA damage in human monocytes, THP-1 cells, was analysed. The cells were incubated with nanosize (~50 nm) and micron (~500 nm) size of CB particles in a concentration range of 50–800 µg/mL. The parameters like MTT assay, phagocytosis assay, ELISA, gene expression, and DNA analysis were studied. Exposure to nano- and micron-sized CB particles showed size- and concentration dependent decrease in cell viability and significant increase in proinflammatory cytokines IL-1β, TNF-α and IL-6 as well as chemokine IL-8 release. Gene expression study showed upregulation of monocyte chemoattractant protein-1 gene while cyclooxygenase-2 gene remained unaffected. Nano CB particles altered the phagocytic capacity of monocytes although micron CB had no significant effect. CB particles did not show any significant effect on DNA of monocytes. The investigations indicate that CB particles in nanosize exhibit higher propensity of inducing cytotoxicity, inflammation, and altered phagocytosis in human monocytes than their micron size.

Highlights

  • The nanoparticle industry has expanded substantially in recent years leading to exposure of various nanomaterials to human and environment

  • The present in vitro study compared the potential differences in the ability of nano- and micro-carbon black (CB) particles to produce toxicity on exposure to human monocytes, THP-1

  • dynamic light scattering (DLS) analysis revealed a hydrodynamic size of dispersed particles in cultured medium indicating agglomeration in aqueous media which was further corroborated by zeta potential measurement

Read more

Summary

Introduction

The nanoparticle industry has expanded substantially in recent years leading to exposure of various nanomaterials to human and environment. Particle size plays an important role in determining the particular biological behavior of nanomaterials. Due to their extreme small size, nanoparticles possess specific large surface area, which makes the number of surface atoms or molecules increasing exponentially. The risks associated with nanoparticles exposure require investigation due to evidence that these particles can be more inflammogenic and toxic than larger particles comprising of the same material [2]. Size-dependent toxicity between micro- and nanoscale particles has been demonstrated [3,4,5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call