Abstract

AbstractThe morphological structure of CB networks in elastomers and their flocculation dynamics under heat treatment and especially during vulcanization are analyzed by dynamic mechanical and dielectric spectroscopy. Dielectric spectra in the MHz range show that nanoscopic gaps between adjacent CB particles develop during heat treatment or vulcanization. These gaps are maintained by immobilized polymer layers acting as flexible bonds between the particles. Low‐frequency dielectric data indicate that the static percolation model qualitatively describes the dielectric properties of the conducting CB network on large length scales, but a superimposed kinetic aggregation process takes place on smaller length scales.magnified image

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.