Abstract
The hybridization of carbon-based nanomaterials (i.e CNTs, fullerenes and graphene) via chemical bonding provides a preferable way to maximize and control their exceptional properties. In line with this understanding, in this study, the design and analysis of new porous graphene-carbon nanotube (G-CNT) hybrid structures obtained by organizing graphene nanoribbons around the CNT units in three different geometric patterns (i.e. square, hexagon, diamond) is presented. With this motivation, after examining the thermodynamic feasibility of the nanostructures , the mechanical and thermal properties are examined by considering the effects of different pattern geometries through classical molecular dynamics simulations. In addition, in order to increase the compressive strength and energy absorption capacity of G-CNT structures, fullerenes are employed as filler units within the cells. Simulation results show that the proposed G-CNT structures have remarkable thermal and mechanical characteristics, which can be modified by the geometric arrangement of CNTs and graphene nanoribbons as well as by the filler agents. Controllability of the thermal conductivity and mechanical strength is promising for different application fields where their ultra-lightweight plays an eminent role. • Novel ultra-light hybrid nanostructures with remarkable thermal and mechanical properties are presented. • Controllable thermal and mechanical properties can be achieved by different geometric arrangements. • A significant enhancement on the compression behavior is demonstrated by the utilization of fullerenes. • A foam-like compressive response with remarkable energy absorbing capacity is observed. • Wide range of application fields including thermal, mechanical and hydrogen storage are targeted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.