Abstract

In this study, hydrophilic magnetic nanoparticles were synthesized by green routes using a methanolic extract of Rubus ulmifolius Schott flowers. The prepared magnetic nanoparticles were coated with carbon-based shell for drug delivery application. The nanocomposites were further chemically functionalized with nitric acid and, sequentially, with Pluronic® F68 (CMNPs-plur) to enhance their colloidal stability. The resulting material was dispersed in phosphate buffer solution at pH 7.4 to study the Doxorubicin loading. After shaking for 48 h, 99.13% of the drug was loaded by the nanocomposites. Subsequently, the drug release was studied in different working phosphate buffer solutions (i.e., PB pH 4.5, pH 6.0 and pH 7.4) to determine the efficiency of the synthesized material for drug delivery as pH-dependent drug nanocarrier. The results have shown a drug release quantity 18% higher in mimicking tumor environment than in the physiological one. Therefore, this study demonstrates the ability of CMNPs-plur to release a drug with pH dependence, which could be used in the future for the treatment of cancer "in situ" by means of controlled drug release.

Highlights

  • In the last decades, nanomaterials have been extensively studied for different applications in order to explore their enhanced properties acquired at the nanoscale

  • The reagents used for the research were: Ammonia solution 25% (Applichem-Panreac, Darmstadt, Germany); disodium hydrogen phosphate dodecahydrate (Na2 HPO4 ·12H2 O, Centralchem, Bratislava Slovakia); doxorubicin hydrochloride (DOX, Discovery Fine Chemicals, Wimborne, U.K.); ethanol absolute (Fisher Scientific, Loughborough, U.K.); formaldehyde (37–38% w/w, Panreac, Barcelona, Spain); iron (II) chloride tetrahydrate (FeCl2 ·4H2 O, Sigma-Aldrich, Germany); iron (III) chloride hexahydrate pure (FeCl3 ·6H2 O, Applichem-Panreac, Darmstadt, Germany); Pluronic® F-68 (Sigma-Aldrich, Germany); sodium dihydrogen phosphate hydrate (NaH2 PO4 ·H2 O, Centralchem, Bratislava, Slovakia); resorcinol (Fisher Scientific, Loughborough, U.K.); sodium hydroxide solution (NaOH, Fisher Scientific, Loughborough, U.K.); tetraethyl orthosilicate (TEOS, Fluka Cheika, Germany)

  • The synthesis of the magnetic cores was performed with three different plant extracts, namely

Read more

Summary

Introduction

Nanomaterials have been extensively studied for different applications in order to explore their enhanced properties acquired at the nanoscale. There is a demand to synthesize nanomaterials with optimized and combined features, such as biocompatibility, colloidal stability, high specific surface area, and controlled shape and size, among others. To fulfill this demand, a multidisciplinary approach is required, uniting several scientific fields, such as biomedicine, chemical, physics, engineering, biology and pharmaceutical [1]. A multidisciplinary approach is required, uniting several scientific fields, such as biomedicine, chemical, physics, engineering, biology and pharmaceutical [1] These nanomaterials can be developed for combined biomedical applications, such as medical diagnosis and therapy, including target drug delivery [2], magnetic resonance imaging (MRI) [3] and cancer hyperthermia treatment [1,4], which has increased their interest for nanomedicine. Several methods to synthesize these nanomaterials have been developed to find some alternatives that are applicable, efficient and with minimal side effects.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.