Abstract

Sterically hindered C═C double bonds often deform into a bent or twisted geometry. Thus, many overcrowded ethylenes or anthraquinodimethanes can adopt multiple conformations, such as a folded form or a twisted form, which are interconvertible under the application of external stimuli. A perpendicular form with biradical character can also be adopted when designed to incorporate a stable carbon-based radical unit, which is involved in stimuli-responsive magnetic switching accompanied by a structural change. This review focuses on recent advances in the development of such strained π-electron systems and reveals the factors that affect the mutual interconversion and switching behavior. The energy barrier for the interconversion of conformational isomers is affected by the tricyclic skeleton or bulky substituents on the C═C double bonds, whereas the relative stability of the perpendicular biradical form increases with the additional insertion of 9,10-anthrylene units into the C═C double bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call