Abstract

The hypothesis that carbon balance is the basis for differences in responses by lightly and normally cropped apple trees to European red mite (ERM) [Panonychus ulmi (Koch)] damage was tested. Mature `Starkrimson Delicious' (Malus domestica Borkh.)/M.26 apple trees were hand-thinned to light (125 fruit/tree, about 20 t/ha) or normal (300 fruit/tree, about 40 t/ha) target crop levels and infested with low [<100 cumulative mite-days (CMD)], medium (400 to 1000 CMD) or high (>1000 CMD) target levels of ERM. A range of crop loads and CMD was obtained. Mite population density, fruit growth, leaf and whole-canopy net CO2 exchange rates (NCER) were measured throughout the growing season of 1994. Leaf area and vegetative growth per tree were also measured. Yield and final mean fruit size were determined at harvest. Return bloom and fruiting were determined the following year. Total shoot length per tree was not affected by crop load or mite damage. ERM reduced leaf and whole-canopy NCER. Normally cropped trees showed fruit weight reduction earlier and more severely than lightly cropped trees with high mite injury. Variation in final fruit weight, return bloom and return fruiting was much better related to whole-canopy NCER per fruit than to CMD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call