Abstract

Polylepis sericea trees grow well above the continuous forest line in the Venezuelan Andes. In these environments, extreme daily temperature ranges can occur at any time of the year and trees experience a 4 month dry period. The purpose of this work was to study carbon and water relations of this species in the field during wet and dry seasons in order to understand this species' success at such high altitudes. Leaf gas exchange (portable system in open mode) and leaf water potential (pressure chamber) were measured at 1–2 h intervals during several daily courses at 4000 m elevation in the Páramo de Piedras Blancas. CO2 assimilation versus leaf temperature curves were also obtained for this species in the laboratory. Clear differences in the measured parameters were observed between seasons. For a wet season day, maximum CO2 assimilation rate was 7.4 μmol m-2 s-1 and leaf conductance was relatively constant (approximately 100 mmol m-2 s-1)In the dry season day, maximum CO2 assimilation rate was 5.8 μmolm-2 s-1 and leaf conductance was close to 60 mmolm-2 s-1. Minimum leaf water potentials measured were -1.3 MPa for the wet and -2.2 MPa for the dry season. The CO2 assimilation-leaf temperature relationship showed a 13.4°C leaf temperature optimum for photosynthesis with maximum and minimum compensation points of 29.5 and -2.8°C, respectively. Maximum night-time respiration was relatively high (2.7 (imol) m-2 s-1)Our results show thatP. sericea maintains a highly positive carbon balance through all daily courses, even though there is a slight water stress effect during the dry season; this suggests that its carbon assimilation machinery is well adapted to the low temperatures and seasonal water stress found in the high tropical mountains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.