Abstract

The present study is a theoretical work of the effect of carbon and silicon co-doping on the optoelectronic properties of ZnO, by generalized gradient approximation (GGA) using the Perdew Burke Ernzerhof functional correlations (PBE) exchange. The results confirmed that O atoms acts as a preferential doping site in the crystal lattice. By introducing carbon atoms, the optoelectronic properties of ZnO change and we show a better absorption of visible light compared to other dopants. The co-insertion of C and Si atoms in ZnO matrix, leads to a smaller refractive index and the absorption coefficient increases. Furthermore, C and Si co-doping changes the band gap, the dielectric function and the loss energy. We also report in this paper the achieved results in the effect of co-doping with native defects points on electronic properties of ZnO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call