Abstract

Abundances of C, O, and Fe are determined for F and G main-sequence stars in the solar neighborhood in order to study trends and systematic differences in the C/Fe, O/Fe, and C/O ratios for stellar populations. Carbon abundances are determined from the CI lines at 5052 and 5380 AA and oxygen abundances from the OI triplet at 7774 AA and the [OI] line at 6300 AA. MARCS model atmospheres are applied and non-LTE corrections for the OI triplet are included. Systematic differences between high- and low-alpha halo stars and between thin- and thick-disk stars are seen in the trends of [C/Fe] and [O/Fe]. The two halo populations and thick-disk stars show the same trend of [C/O] versus [O/H], whereas thin-disk stars are shifted to higher [C/O]. Furthermore, we find some evidence of higher C/O and C/Fe ratios in stars hosting planets than in stars for which no planets have been detected. The results suggest that C and O in both high- and low-alpha halo stars and in thick-disk stars are made mainly in massive stars, whereas thin-disk stars have an additional carbon contribution from low-mass AGB and massive stars of high metallicity causing a rising trend of C/O with increasing metallicity. However, the C/O ratio does not exceed 0.8, which seems to exclude formation of carbon planets if proto-planetary disks have the same composition as their parent stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.