Abstract

Although several studies have quantified either C mineralisation or net N mineralisation in particle-size fractions, no work has examined simultaneous C and net N mineralisation. Therefore, we conducted an 18-week laboratory incubation to compare simultaneous mineralisation in sand, silt, and clay fractions. The soils (silt loams) were collected from fields of long-term pasture and maize. Sand, silt, and clay were separated by mild dispersion in water followed by centrifugation. Samples were incubated at 25°C in the dark in a quartz matrix, and were leached every 2 weeks with 0.004 M CaCl 2 at a suction of 20 kPa to remove soluble products. C mineralisation was determined from CO 2 -C evolved each 2 weeks, and mineral N was measured in the leachate. C mineralisation, on a C basis, followed the order sand > clay > silt, and was related (r 2 = 0.88) to the proportion of O-alkyl C (carbohydrate C) estimated from 13 C NMR. The low mineralisation in the silt may also have been a result of the physical protection of substrates in small pores in this fraction. The rates of N release were initially rapid from the maize soil fractions, and were consistent with the high initial mineral-N contents; subsequently, the rates were slower, and probably related to C mineralisation. For the pasture soil, N mineralisation followed the order clay>silt>sand, and was inversely related to the C: N ratios. Immobilisation appeared to take place in the sand fraction, whereas a large part of the net N mineralisation occurred in the clay fraction. There is now good evidence that rates of C and net N mineralisation differ within discrete particle size fractions, and data on such fractions could be useful for constructing soil organic matter models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.