Abstract
Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early ( Microcoleus) or later successional ( Nostoc/ Scytonema or Placidium/ Collema) and measured photosynthesis ( P n), nitrogenase activity (NA), and chlorophyll fluorescence ( F v/ F m) on metabolically active (moist) soil crusts. Later successional crusts typically had greater P n, averaging 1.2–1.3-fold higher daily C fixation in Canyonlands and 2.4–2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3–7.5-fold higher daily N fixation in Canyonlands and 1.3–25.0-fold higher in the Jornada. Mean daily F v/ F m was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.