Abstract

The anaerobic degradation of propane and butane is typically initiated by activation via addition to fumarate. Here we investigated the mechanism of activation under sulfate-reducing conditions by one pure culture (strain BuS5) and three enrichment cultures employing stable isotope analysis. Stable isotope fractionation was compared for cultures incubated with or without substrate diffusion limitation. Bulk enrichment factors were significantly higher in mixed vs. static incubations. Two dimensional factors, given by the correlation of stable isotope fractionation of both carbon and hydrogen at their reactive positions (Lambda reactive position, Λrp), were compared to analyse the activation mechanisms. A characteristic reactive position isotope fractionation pattern was observed, distinct from aerobic degradation. Λrp values ranged from 10.5 to 11.8 for propane and from 7.8 to 9.4 for butane. Incubations of strain BuS5 with deuterium-labelled n-alkanes indicated that butane was activated solely at the subterminal C atom. In contrast, propane was activated mainly at the subterminal C atom but also significantly at the terminal C atoms. A conservative estimate suggests that about 70% of the propane activation events occurred at the subterminal C atom and about 30% at the terminal C atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.