Abstract

We investigated the extent and variability of C and Cl isotope fractionation during the reduction of polychlorinated ethanes to evaluate the potential use of Cl isotope analysis for the assessment of contaminant transformation in subsurface environments. Kinetic isotope effects (KIE) for C and Cl for the reductive beta-elimination of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), pentachloroethane (PCA), and hexachloroethane by Cr(II) used as model reductant in homogeneous solution were compared to KIEs measured for dehydrochlorination of 1,1,2,2-TeCA and PCA. Since isotopic reactions of polychlorinated compounds are complicated by the simultaneous presence of several Cl isotopologues and intramolecular isotopic competition, we present a procedure for the determination of KIEs for Cl from the initial reactant and final product Cl isotope ratios. Despite different reaction mechanisms, that is reduction via dissociative inner-sphere electron transfer by Cr(H2O)6(2+) and base-catalyzed, concerted elimination, respectively, apparent KIEs for C of both pathways fall within a similar range (1.021-1.031). In contrast, KIEs for Cl are significantly higher for reductive beta-elimination (1.013-1.021) than for dehydrochlorination (1.000-1.006). These results suggest that reductive transformations of polychlorinated contaminants might be identified on the basis of combined C and Cl isotope analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.