Abstract
This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored inmore » the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the spillover process (i.e. kinetics of hydrogen dissociation, diffusion and recombination) and allow for optimization of these materials to meet the DOE targets for hydrogen storage. In a parallel effort, we are also designing CA materials as nanoporous scaffolds for metal hydride systems. Recent work by others has demonstrated that nanostructured metal hydrides show enhanced kinetics for reversible hydrogen storage relative to the bulk materials. This effect is diminished, however, after several hydriding/dehydriding cycles, as the material structure coarsens. Incorporation of the metal hydride into a porous scaffolding material can potentially limit coarsening and, therefore, preserve the enhanced kinetics and improved cycling behavior of the nanostructured metal hydride. Success implementation of this approach, however, requires the design of nanoporous solids with large accessible pore volumes (> 4 cm{sup 3}/g) to minimize the gravimetric and volumetric capacity penalties associated with the use of the scaffold. In addition, these scaffold materials should be capable of managing thermal changes associated with the cycling of the incorporated metal hydride. CAs are promising candidates for the design of such porous scaffolds due to the large pore volumes and tunable porosity of aerogel framework. This research is a joint effort with HRL Laboratories, a member of the DOE Metal Hydride Center of Excellence. LLNL's efforts have focused on the design of new CA materials that can meet the scaffolding requirements, while metal hydride incorporation into the scaffold and evaluation of the kinetics and cycling performance of these composites is performed at HRL.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.