Abstract

Wildfire is a natural disturbance in many forested biomes, with the loss of carbon to the atmosphere and mortality of trees actively sequestering carbon of global concern as a contribution to climate change. Natural regeneration is often successful at reestablishing a forest in ecosystems adapted to fire, but there is increasing concern that the changing size, frequency and severity of wildfire is causing regeneration failures or inadequate densities of trees that sequester and store carbon following these disturbances. It remains unclear whether the action of planting trees accelerates carbon storage following fire compared to forests established through natural regeneration. The central interior of British Columbia recently experienced multiple years of record-breaking fire activity. Rehabilitation planting focused on reestablishing trees in the managed forest but was also prescribed in previously unmanaged forests to initiate carbon sequestration. Planting is often accompanied by other stand treatments such as salvage harvesting or snag removal and debris clearing to ensure planter safety. Here, we determine carbon recovery and stores in 21 wildfires across a chronosequence from the early 1960s to 2015. We measured above and belowground carbon pools to determine the effect of time since fire and planting treatments on carbon. Tree planting did not increase total ecosystem carbon over time, but rather decreased carbon through the loss of dead wood from site preparation. All carbon pools were affected by time since fire except the mineral soil pool, which was best predicted by soil clay content and coarse fragments positive effects. Live tree carbon increased over time, with more stored in planted stands over 60 years compared to stands that were not planted. Projecting growth to 100 years since fire suggests we may see increasing divergence in carbon stores in planted stands over a full fire-return interval, but these differences remain relatively small [mean (sd): 140.8 (19.6) Mg⋅ha–1 in planted compared to 136.9 (27.5) Mg⋅ha–1 in not-planted stands], with 1.4 Mg⋅ha–1 year–1 sequestered in not-planted compared to 1.5 Mg⋅ha–1 year–1 in planted stands. To meet carbon objectives, replanting trees on average sites in burned forests of BC’s central interior would require preserving the carbon legacy of fire, including dead wood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.