Abstract

AbstractCarbon‐13 chemical shifts, spin‐lattice relaxation times and nuclear Overhauser enhancement factors are reported for five polyfluoroaromatic compounds at 28°C. In all cases the relaxation of the fluorine bearing carbon is predominantly dipolar. Effective correlation times are smaller than those of the analogous benzene derivatives by a factor of 3–4, in qualitative agreement with predictions from the Stokes–Einstein diffusion theory. The T1 values for the para‐carbon of monosubstituted fluorobenzenes is clearly shorter than the T1 values for the ortho‐ and meta‐carbons. This phenomenon was traced to anisotropic tumbling, and D∥ and D⊥ diffusion coefficients were computed using Woessner's equations for molecules assumed to behave like symmetric rotors about their C2 in‐plane principal symmetry axis. Equal tumbling ratios, D∥/D⊥, were found in this way for toluene and perfluorotoluene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.