Abstract
The cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type 5 (PDE5) plays an important role in various pathologies including pulmonary arterial hypertension and cardiomyopathy. PDE5 represents an important therapeutic and/or prognostic target, but noninvasive assessment of PDE5 expression is lacking. The purpose of this study was to develop and evaluate pyridopyrazinone derivatives labeled with carbon-11 or fluorine-18 as PDE5-specific PET tracers. In biodistribution studies, highest PDE5-specific retention was observed for [11C]-12 and [18F]-17 in the lungs of wild-type mice and in the myocardium of transgenic mice with cardiomyocyte-specific PDE5 overexpression at 30 min postinjection. In vivo dynamic microPET images in rats revealed that both tracers crossed the blood-brain barrier but brain retention was not PDE5-specific. Both [11C]-12 and [18F]-17 showed specific binding to PDE5 in myocardium of transgenic mice; however [18F]-17 showed significantly higher PDE5-specific inhibitable binding than [11C]-12.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.