Abstract
A number of viruses that have caused wide spread concern e.g. Ebola, Zika, and SARS-CoV2 (severe acute respiratory syndrome coronavirus 2 also known as COVID 19) have at various times, become newsworthy as a result of being newly discovered, mutations enabling them to more efficiently infect humans or modern modes of transportation moving them to areas with naive, susceptible populations. As more is learned about the mechanisms whereby these pathogens enter human cells it has become increasingly evident that carbohydrates expressed on the surface of either target cells or the pathogens themselves are essential. Variability in carbohydrate structures as well as the presence of carbohydrate binding receptors (lectins) provides a plethora of potential binding interactions by which infection of cells can occur. Identification of specific lipid- or protein-associated carbohydrates essential for infection provides support for research being done to develop carbohydrate related inhibitors of those interactions. This chapter (1) discusses scenarios for how carbohydrates affect the ability of specific infectious agents to interact with neural cells, (2) gives examples of problems that may result from development of antibodies to carbohydrate antigens found on pathogens that are similar to epitopes expressed on mammalian cells, and (3) provides examples of approaches either in use or under consideration for translational uses of this information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.