Abstract

Starch and sucrose metabolism of one‐ and two‐year‐old needles of Norway spruce (Picea abies [L.] Karst., about 30 years old) was investigated from three months before until three months after bud break at a natural site. We distinguish different metabolic states according to the extractable activities of enzymes (α‐amylase [EC 3.2.1.1], ADP‐glucose pyrophosphorylase [AGP, EC 2.7.7.27], D‐enzyme [EC 2.4.1.25], starch phosphorylase [STP. EC 2.4.1.1]), sucrose phosphate synthase [SPS, EC 2.4.1.14], sucrose syntbase [SS, EC 2.4.1.13]. acid invertase [AI, EC 3.2.1.261) and pool sizes of related metabolites (starch, glucose, fructose, sucrose, raffinose, stachyose, fructose 6‐phosphate [F6P], glucose 6‐phosphate [G6P], fructose 2,6‐bisphosphate [F26BP], and inorganic phosphate [P1]). The period ending with bud break was characterized by high rates of net photosynthesis, a pronounced decrease in the amount of soluble sugars, and a steep rise in starch (from the detection limit to approximately 600 nmol glycosyl units [mg dry weight]‐1). In parallel, the extractable activity of AGP increased, while D‐enzyme was on a relative high level when compared with the period after bud break. With respect to sucrose metabolism, F26BP, an inhibitor of sucrose synthesis, decreased from 1 to 0.4 pmol (mg dry weight)‐1. This was complemented by SPS activity, which was due to both increased protein levels shown by immunoblotting and activation under metabolite control (high levels of G6P and a low Pi/G6P ratio). This indicates a high capacity of synthesis of starch and sucrose in the period before bud break. These observations are in accordance with estimates of photosynthetic carbon gain, which indicate that in early spring large amounts of carbon from current photosynthesis are exported out of the needles. In addition, the content of nonstructural carbohydrates (expressed as hexoses) increased in the bark of the stem. This could also be a consequence of an enhanced carbon export from the needles.After the onset of bud break, starch concentration decreased in all tissues under investigation. In contrast, the level of total nonstructural carbohydrates in the outermost sapwood nearly doubled from bud break until the end of sampling. In the needles, net photosynthesis was reduced by about 75% and a decrease in SPS activity and protein level were found together with lower G6P concentration, and an increased Pi/G6P ratio. These results suggest that during that period sucrose synthesis was reduced in the older needles. In addition, under conditions of reduced photosynthesis, carbon demand of current year needles was in part ensured by the mobilization of starch in the older needles.Taken together our data show that before bud break carbon metabolism of mature leaves is related with the sink demands of storage organs. After bud break the accumulated assimilate pools in needles and stem, mainly the bark, are mobilized and support carbon supply to new tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call