Abstract

This study examined the effect of reduced plasma free fatty acid (FFA) availability on carbohydrate metabolism during exercise. Six untrained women cycled for 60 minutes at approximately 58% of maximum oxygen uptake after ingestion of a placebo (CON) or nicotinic acid (NA), 30 minutes before exercise (7.4 ± 0.5 mg·kg−1 body weight), and at 0 minutes (3.7 ± 0.3 mg·kg−1) and 30 minutes (3.7 ± 0.3 mg·kg−1) of exercise. Glucose kinetics were measured using a primed, continuous infusion of [6,6-2H] glucose. Plasma FFA (CON, 0.86 ± 0.12; NA, 0.21 ± 0.11 mmol·L−1 at 60 minutes, P < .05) and glycerol (CON, 0.34 ± 0.05; NA, 0.10 ± 0.04 mmol·L−1 at 60 minutes, P < .05) were suppressed throughout exercise. Mean respiratory exchange ratio (RER) during exercise was higher (P < .05) in NA (0.89 ± 0.02) than CON (0.83 ± 0.02). Plasma glucose and glucose production were similar between trials. Total glucose uptake during exercise was greater (P < .05) in NA (1,876 ± 161 μmol·kg−1) than in CON (1,525 ± 107 μmol·kg−1). Total fat oxidation was reduced (P < .05) by approximately 32% during exercise in NA. Total carbohydrate oxidized was approximately 42% greater (P < .05) in NA (412 ± 40 mmol) than CON (290 ± 37 mmol), of which, approximately 16% (20 ± 10 mmol) could be attributed to glucose. Plasma insulin and glucagon were similar between trials. Catecholamines were higher (P < .05) during exercise in NA. In summary, during prolonged moderate exercise in untrained women, reduced FFA availability results in a compensatory increase in carbohydrate oxidation, which appears to be due predominantly to an increase in glycogen utilization, although there was a small, but significant, increase in whole body glucose uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.