Abstract

Three different C5-carbohydrate-functionalized LNA uridine phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides. C5-Carbohydrate-functionalized LNA display higher affinity toward complementary DNA/RNA targets (ΔTm/modification up to +11.0 °C), more efficient discrimination of mismatched targets, and superior resistance against 3'-exonucleases compared to conventional LNA. These properties render C5-carbohydrate-functionalized LNAs as promising modifications in antisense technology and other nucleic acid targeting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.