Abstract

The cellular structures of acid rain-irrigated needles of several provenances of Norway spruce (Picea abies L. Karst) seedlings were studied after winter experimental freezing. Frost injuries and recovery were characterized by visual damage scoring and classification of mesophyll cell alterations, also using histochemical methods for carbohydrate fluorescent staining. The treatment with-30° C during the late dormancy period was sufficient to cause significant injuries and intracellular degradation in the tissues of the green needles. The most affected seedlings in terms of visual injury scoring were found among those treated with clean water or at pH 3, while freezing injury, defined as an occlusion of phenolic substances in the central vacuole of the mesophyll cells, was most abundant in the needles from spruces irrigated either with clean water or at pH 4 or pH 3. Electron microscopy revealed the details of the injury, e. g. thinning out of the cytoplasm and chloroplast stroma, darkening of the chloroplasts and eventually swelling of the chloroplasts and protoplast. PAS and ConA reactions in the needle tissue revealed intense starch accumulation in the mesophyll and transfusion tissues as early as in March, with a tendency to increase, especially in the untreated needles during the recovery period. Plasma membrane disturbances were indicated by histochemical identification of callose deposits in the mesophyll cell walls, these being most abundant in the acid rain-treated needles. All these findings suggest that freezing at −30° C was more deleterious to the seedlings pretreated with acid or clean water than to those not given additional irrigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.