Abstract

Malaria, a prevalent fatal disease around the world is caused by Plasmodium sp. and is transmitted by the bite of female Anopheles mosquito. It is leading cause of death in this century among most infectious diseases. Drug resistance was reported for almost every front-line drug against the deadliest species of the malarial parasite, i.e., Plasmodium falciparum. In the evolutionary arms race between parasite and existing arsenals of drugs new molecules having novel mechanism of action is urgently needed to overcome the drug resistance. In this review, we have discussed the importance of carbohydrate derivatives of different class of compounds as possible antimalarials with emphasis on mode of action, rational design, and SAR with improved efficacy. Carbohydrate-protein interactions are increasingly important for medicinal chemists and chemical biologists to understand the pathogenicity of the parasite. Less is known about the carbohydrate-protein interactions and pathogenicity in the Plasmodium parasite. With the increased knowledge on protein-sugar interaction and glycomics of Plasmodium parasites, carbohydrate derivatives can surpass the existing biochemical pathways responsible for drug resistance. The new candidates with novel mode of action will prove to be a potent antimalarial drug candidate without any parasitic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call