Abstract

The nature of carbohydrate binding first to p-hydroxy toluene and then the capped amino acid, N-acetyl l-tyrosine methyl amide (AcTyrNHMe), has been investigated in a solvent-free environment under molecular beam conditions. A combination of double resonance IR-UV spectroscopy and quantum chemical calculations has established the structures of complexes with the α and β anomers of methyl d-gluco- and d-galacto- and l-fucopyranosides (α/βMeGlc, MeGal, MeFuc). The new results, when combined with dispersion-corrected DFT calculations, reveal gas phase structures which are dominated by hydrogen bonding but also with evidence of CH-π bonded interactions in complexes with α/βMeGal. These adopt stacked intermolecular structures in marked contrast to those with α/βMeGlc; p-OH → O bonds linking AcTyrNHMe, or p-hydroxy toluene, to the carbohydrate provide an anchor that facilitates further binding, both through OH → O and NH → O hydrogen bonds to the peptide backbone and through CH-π dispersion interactions with the aromatic side group. "Stacked" structures associated with dispersion interactions with the aromatic ring are not detected in the corresponding complexes of capped phenylalanine, despite their common occurrence in bound carbohydrate-protein structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.