Abstract

Dicarboxylic acid transport mutants of Rhizobium species are usually deficient in their ability to fix atmospheric dinitrogen. We report here a study comparing the physiology of root nodules on Phaseolus vulgaris L. cv. Goldie induced by an effective strain of Rhizobium leguminosarum biovar phaseoli and a C4‐dicarboxylic acid utilization mutant. The mutant, while able to form nodules, was ineffective in N2 fixation. Carbohydrates and organic acids of roots and nodules formed by the 2 strains were monitored at 3‐day intervals from 13 to 34 days after inoculation. Both carbohydrates and organic acids accumulated in ineffective nodules in comparison with the effective nodules. The concentration of malic acid was tenfold higher in ineffective nodules than in effective nodules. Other organic acids, i.e., lactate, malonate, ascorbate and gluconate, were also detected. Lactate and ascorbate were the only other organic acids accumulating in ineffective nodules. The most prevalent carbohydrates found in both types of nodules were sucrose, glucose and fructose. Myo‐inositol was the only cyclitol detected in both types of nodules. Carbohydrates and organic acids were present in lower concentration in roots than in nodules, except for lactate. These compounds were not consistently detected in higher concentration in roots from plants inoculated with the mutant strain, as was the case in nodules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.