Abstract
Coptotermes formosanus is one of the most destructive wood-feeding termites. To understand the molecular mechanisms that regulate the development of the termite, a normalized C. formosanus cDNA library was constructed using mixed RNA isolated from workers, soldiers, nymphs and alates of both sexes. The sequencing of this library generated 131 636 expressed sequence tags (ESTs) and 25 939 assembled unigenes. The carbohydrate-active enzymes (CAZymes) revealed in this library were analysed in the present report. A total of 509 putative CAZymes were identified. Diverse cellulolytic enzymes were uncovered from both the host termite and from symbionts harboured by the termite, which were possibly the result of the high efficiency of cellulose utilization. CAZymes associated with trehalose biosynthetic and metabolic pathways were also identified, which are potential regulators of the physiological activities of trehalose, an important insect blood sugar. Representative CAZyme coding genes in glycoside hydrolase family 1 (GH1) were quantitatively analysed. The results showed that the five GH1 β-glucosidase genes were expressed differentially among different castes and one of them was female alate-specific. Overall, the normalized EST library provides a comprehensive genetic resource of C. formosanus and will serve a diverse range of research areas. The CAZymes represent one of the repositories of enzymes useful for physiological studies and applications in sugar-based biofuel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Insect Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.