Abstract

Hydrophilic N-doped carbogenic nanodots (denoted as CNDs) have been prepared from a N-methylpiperazine-templated zeolite precursor by calcination and NaOH treatment. The isolated CNDs exhibit tunable photoluminescence according to the concentration and pH value of aqueous dispersions of the CNDs. Fine-tuning of the fluorescence emission wavelength across the entire visible spectrum can be easily achieved by varying the concentration of the CND dispersions. Meanwhile, both the emission wavelength and intensity of the photoluminescence can be tuned by controlling the pH value of the CND dispersion. The pyrolysis of organic templates confined in nanoporous zeolites represents a new approach to controlling the optical properties of CNDs, which may open more opportunities in applications such as multimodal sensing and full-color displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.