Abstract

The design, synthesis, and properties of an extremely acid-labile backbone amide linker based on a regiospecifically substituted tetraalkoxy naphthaldehyde core are presented. This handle enables cleavage of peptide backbone amides (secondary amides) off a solid support using as little as 0.5% TFA in CH2Cl2. This proceeds without cleavage of tert-butyl ethers and tert-butyl esters. The design is based on a DFT study that predicted the most stabile alkoxy-substituted methyl naphthyl carbocation. [structure: see text]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.