Abstract
Carbocations are crucial intermediates in many chemical reactions; hence, considerable effort has gone into investigating their structures and properties, for example, in superacids, in salts, or in the gas phase. However, studies of the vibrational structure of carbocations are not abundant, because their infrared spectra are difficult to obtain in superacids or salts (where furthermore the cations may be perturbed by counterions), and the generation of gas-phase carbocations in discharges usually produces several species. We have applied the technique of ionizing neutral compounds by X-irradiation of cryogenic Ar matrices to radicals embedded in such matrices, thus producing closed-shell cations that can be investigated leisurely, and in the absence of counterions or other perturbing effects, by various forms of spectroscopy. This Article describes the first set of results that were obtained by this approach, the IR spectra of the allyl and the benzyl cation. We use the information obtained in this way, together with previously obtained data, to assess the changes in chemical bonding between the allyl and benzyl radicals and cations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.