Abstract

We show that carbenoxolone, a drug used to block hemichannels in the retina to test the ephaptic model of horizontal cell inhibitory feedback, has strong inhibitory effects on voltage-gated Ca channels. Carbenoxolone (100 microM) reduced photoreceptor-to-horizontal cell synaptic transmission by 92%. Applied to patch-clamped, isolated cone photoreceptors, carbenoxolone inhibited Ca channels with an EC(50) of 48 microM. At 100 microM, it reduced cone Ca channel current by 37%, reduced depolarization-evoked [Ca(2+)] signals in fluo-4 loaded retinal slices by 57% and inhibited Ca channels in Müller cells by 52%. A synaptic transfer model suggests that the degree of block of Ca channels accounts for the reduction in synaptic transmission. These results suggest broad inhibitory actions for carbenoxolone in the retina that must be considered when interpreting its effects on inhibitory feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.