Abstract

Time-resolved (CW) EPR spectroscopy at X-band has been used to detect free radicals created by H-atom abstraction reactions of photochemically generated carbenes in n-hexadecane solutions at room temperature. Three different carbenes were studied, formed via loss of nitrogen after photo-excitation of a substituted biphenyl diazo precursor. The TREPR signals from two different alkyl radicals and the benzylic-type radical from the carbene are detected for two of the three diazo substrates. The radicals were unambiguously identified by spectral simulation using literature parameters (g-factors and hyperfine coupling constants). Previous transient optical absorption spectroscopy experiments have concluded that these two carbenes have triplet ground states, which is confirmed by the low field emissive, high field absorptive phase of the TREPR signals reported here. The spectra are strongly spin polarized by the Radical Pair Mechanism of CIDEP, and their overall intensities track with the measured quantum yields for carbene production. A third substrate, known to react via a concerted Wolff reaction or excited state rearrangement via a singlet state, showed no TREPR signal, as expected. Reactions run in acetonitrile, where the spin multiplicity is reversed to give a singlet ground state, did not lead to detectable TREPR signals for all three substrates. The observations are consistent with previously published laser flash photolysis results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call