Abstract

The mechanism of cobalt(II)-porphyrin-mediated cyclopropanation of olefins with diazoesters was studied. The first step--reaction of cobalt(II)-porphyrin with ethyl diazoacetate (EDA)--was examined using EPR and ESI-MS techniques. EDA reacts with cobalt(II)-porphyrin to form a 1:1 Co(por)(CHCOOEt) adduct that exists as two isomers: the 'bridging carbene' C' in which the 'carbene' is bound to the metal and the pyrrolic nitrogen of the porphyrin that has a d(7) configuration on the metal, and the 'terminal carbene' C in which the 'carbene' behaves as a redox noninnocent ligand having a d(6) cobalt center and the unpaired electron residing on the 'carbene' carbon atom. The subsequent reactivities of the thus formed 'cobalt carbene radical' with propene, styrene, and methyl acrylate were studied using DFT calculations. The calculations suggest that the formation of the carbene is the rate-limiting step for the unfunctionalized Co(II)(por) and that the cyclopropane ring formation proceeds via a stepwise radical process: Radical addition of the 'carbene radical' C to the C=C double bonds of the olefins results in formation of the gamma-alkyl radical intermediates D. Species D then easily collapse in almost barrierless ring-closure reactions (TS3) to form the cyclopropanes. This radical mechanism readily explains the high activity of Co(II)(por) species in the cyclopropanation of electron-deficient olefins such as methyl acrylate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.